Linear Algebra I

20/03/2014, Thursday, 14:00-16:00

You are NOT allowed to use any type of calculators.
$1(8+7+7=22 \mathrm{pts})$
Inner product spaces

Consider the vector space $\mathbb{R}^{2 \times 2}$. Let

$$
\langle A, B\rangle=\operatorname{tr}\left(A^{T} B\right)
$$

where tr denotes the sum of the diagonal elements.
a. Show that $\langle A, B\rangle$ is an inner product.
b. Find the distance between the matrices $\left[\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right]$ and $\left[\begin{array}{ll}3 & 3 \\ 1 & 2\end{array}\right]$.
c. Find the angle between the matrices $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ and $\left[\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right]$.

Required Knowledge: definition of inner product spaces.

SOLUTION:

1a: We need to show that
i. $\langle A, A\rangle \geqslant 0$ for all $A \in \mathbb{R}^{2 \times 2}$, and $\langle A, A\rangle=0$ if and only if $A=0$,
ii. $\langle A, B\rangle=\langle B, A\rangle$ for all $A, B \in \mathbb{R}^{2 \times 2}$,
iii. $\langle\alpha A+\beta B, C\rangle=\alpha\langle A, C\rangle+\beta\langle B, C\rangle$ for all $A, B, C \in \mathbb{R}^{2 \times 2}$ and $\alpha, \beta \in \mathbb{R}$.

To show (i), let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then, we have

$$
A^{T} A=\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
a^{2}+c^{2} & a b+c d \\
a b+c d & b^{2}+d^{2}
\end{array}\right]
$$

This means that

$$
\langle A, A\rangle=a^{2}+c^{2}+b^{2}+d^{2} \geqslant 0
$$

for all $A \in \mathbb{R}^{2 \times 2}$. Moreover, we have

$$
a^{2}+c^{2}+b^{2}+d^{2}=0 \quad \text { if and only if } \quad a=b=c=d=0
$$

In other words,

$$
\langle A, A\rangle=0 \quad \text { if and only if } \quad A=0
$$

To show (ii), let

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \quad B=\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]
$$

Note that

$$
A^{T} B=\left[\begin{array}{ll}
a_{11} & a_{21} \\
a_{12} & a_{22}
\end{array}\right]\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]=\left[\begin{array}{ll}
a_{11} b_{11}+a_{21} b_{21} & a_{11} b_{12}+a_{21} b_{22} \\
a_{12} b_{11}+a_{22} b_{21} & a_{12} b_{12}+a_{22} b_{22}
\end{array}\right]
$$

and

$$
B^{T} A=\left[\begin{array}{ll}
b_{11} & b_{21} \\
b_{12} & b_{22}
\end{array}\right]\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{ll}
b_{11} a_{11}+b_{21} a_{21} & b_{11} a_{12}+b_{21} a_{22} \\
b_{12} a_{11}+b_{22} a_{21} & b_{12} a_{12}+b_{22} a_{22}
\end{array}\right]
$$

Then, we have

$$
\operatorname{tr}\left(A^{T} B\right)=\operatorname{tr}\left(B^{T} A\right)=a_{11} b_{11}+a_{21} b_{21}+a_{12} b_{12}+a_{22} b_{22}
$$

This means that

$$
\langle A, B\rangle=\langle B, A\rangle
$$

for all $A, B \in \mathbb{R}^{2 \times 2}$.
To show (iii), note that

$$
\langle\alpha A+\beta B, C\rangle=\operatorname{tr}\left((\alpha A+\beta B)^{T} C\right)=\operatorname{tr}\left(\alpha A^{T} C\right)+\operatorname{tr}\left(\beta B^{T} C\right)
$$

since $\operatorname{tr}(M+N)=\operatorname{tr}(M)+\operatorname{tr}(N)$. Now, it follows from the fact that $\operatorname{tr}(\mu M)=\mu \operatorname{tr}(M)$ that we have

$$
\langle\alpha A+\beta B, C\rangle=\operatorname{tr}\left(\alpha A^{T} C\right)+\operatorname{tr}\left(\beta B^{T} C\right)=\alpha \operatorname{tr}\left(A^{T} C\right)+\beta \operatorname{tr}\left(B^{T} C\right)=\alpha\langle A, C\rangle+\beta\langle B, C\rangle .
$$

for all $A, B, C \in \mathbb{R}^{2 \times 2}$ and $\alpha, \beta \in \mathbb{R}$.
$\mathbf{1 b}$: The distance of two matrices A and B is defined by

$$
\|A-B\|=\langle A-B, A-B\rangle^{\frac{1}{2}}
$$

Hence, we have

$$
\begin{aligned}
\left\|\left[\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right]-\left[\begin{array}{ll}
3 & 3 \\
1 & 2
\end{array}\right]\right\|^{2} & =\left\|\left[\begin{array}{rr}
-2 & -1 \\
0 & -2
\end{array}\right]\right\|^{2}=\operatorname{tr}\left(\left[\begin{array}{rr}
-2 & -1 \\
0 & -2
\end{array}\right]^{T}\left[\begin{array}{rr}
-2 & -1 \\
0 & -2
\end{array}\right]\right) \\
& =\operatorname{tr}\left(\left[\begin{array}{rr}
-2 & 0 \\
-1 & -2
\end{array}\right]\left[\begin{array}{rr}
-2 & -1 \\
0 & -2
\end{array}\right]\right)=\operatorname{tr}\left(\left[\begin{array}{ll}
4 & 2 \\
2 & 5
\end{array}\right]\right)=9
\end{aligned}
$$

Therefore, the distance between these matrices is 3 .
1c: The angle two matrices A and B is defined by

$$
\cos \theta=\frac{\langle A, B\rangle}{\|A\|\|B\|}
$$

Note that

$$
\begin{gathered}
\left\langle\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right],\left[\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right]\right\rangle=\operatorname{tr}\left(\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]^{T}\left[\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right]\right)=\operatorname{tr}\left(\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right]\right)=\operatorname{tr}\left(\left[\begin{array}{ll}
2 & 0 \\
2 & 0
\end{array}\right]\right)=2 \\
\left\|\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\right\|=\operatorname{tr}\left(\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]^{T}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\right)^{\frac{1}{2}}=\operatorname{tr}\left(\left[\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right]\right)^{\frac{1}{2}}=2
\end{gathered}
$$

and

$$
\left\|\left[\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right]\right\|=\operatorname{tr}\left(\left[\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right]^{T}\left[\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right]\right)^{\frac{1}{2}}=\operatorname{tr}\left(\left[\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right]\right)^{\frac{1}{2}}=\operatorname{tr}\left(\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]\right)^{\frac{1}{2}}=2
$$

Therefore, we get

$$
\cos \theta=\frac{2}{2 \cdot 2}=\frac{1}{2}
$$

which means that $\theta=\frac{\pi}{3}$.
a. Find an orthogonal matrix that diagonalizes the matrix $\left[\begin{array}{rrr}3 & 0 & -2 \\ 0 & 3 & 0 \\ -2 & 0 & 3\end{array}\right]$.
b. Without finding its eigenvalues, determine whether or not the matrix $\left[\begin{array}{rrr}i & -1 & 1 \\ 1 & -i & -1 \\ -1 & 1 & i\end{array}\right]$ is unitarily diagonalizable.

REQUIRED KNOWLEDGE: diagonalization, normal matrices.

Solution:

2a: We begin with finding the eigenvalues. Note that

$$
\begin{aligned}
\operatorname{det}\left(\left[\begin{array}{rrr}
3-\lambda & 0 & -2 \\
0 & 3-\lambda & 0 \\
-2 & 0 & 3-\lambda
\end{array}\right]\right)=(3-\lambda) \operatorname{det}\left(\left[\begin{array}{rr}
3-\lambda & -2 \\
-2 & 3-\lambda
\end{array}\right]\right) & =(3-\lambda)\left((3-\lambda)^{2}-4\right) \\
& =(3-\lambda)(3-\lambda-2)(3-\lambda+2)
\end{aligned}
$$

Therefore, the eigenvalues are $\lambda_{1}=1, \lambda_{2}=3$, and $\lambda_{3}=5$. Now, we proceed with finding eigenvectors.

For $\lambda_{1}=1$, we have

$$
\left[\begin{array}{rrr}
2 & 0 & -2 \\
0 & 2 & 0 \\
-2 & 0 & 2
\end{array}\right] x_{1}=0 \quad \Longrightarrow \quad x_{1}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

For $\lambda_{2}=3$, we have

$$
\left[\begin{array}{rrr}
0 & 0 & -2 \\
0 & 0 & 0 \\
-2 & 0 & 0
\end{array}\right] x_{2}=0 \quad \Longrightarrow \quad x_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

For $\lambda_{3}=5$, we have

$$
\left[\begin{array}{rrr}
-2 & 0 & -2 \\
0 & -2 & 0 \\
-2 & 0 & -2
\end{array}\right] x_{3}=0 \quad \Longrightarrow \quad x_{3}=\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right]
$$

Since the matrix we deal with is symmetric and eigenvectors corresponding to distinct eigenvalues of a symmetric matrix are orthogonal each other, the vectors x_{1}, x_{2}, and x_{3} are mutually orthogonal. Then, we only need to normalise those vectors in order to obtain an orthogonal diagonalizer. Thus, we get

$$
\left[\begin{array}{rrr}
3 & 0 & -2 \\
0 & 3 & 0 \\
-2 & 0 & 3
\end{array}\right]\left[\begin{array}{ccr}
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
0 & 1 & 0 \\
\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
0 & 1 & 0 \\
\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 5
\end{array}\right] .
$$

2b: A complex matrix is unitarily diagonalizable if and only if it is normal. Note that

$$
\left[\begin{array}{rrr}
i & -1 & 1 \\
1 & -i & -1 \\
-1 & 1 & i
\end{array}\right]^{H}\left[\begin{array}{rrr}
i & -1 & 1 \\
1 & -i & -1 \\
-1 & 1 & i
\end{array}\right]=\left[\begin{array}{rrr}
-i & 1 & -1 \\
-1 & i & 1 \\
1 & -1 & -i
\end{array}\right]\left[\begin{array}{rrr}
i & -1 & 1 \\
1 & -i & -1 \\
-1 & 1 & i
\end{array}\right]=\left[\begin{array}{rrr}
3 & -1 & -1-2 i \\
-1 & 3 & -1 \\
-1+2 i & -1 & 3
\end{array}\right]
$$

and that
$\left[\begin{array}{rrr}i & -1 & 1 \\ 1 & -i & -1 \\ -1 & 1 & i\end{array}\right]\left[\begin{array}{rrr}i & -1 & 1 \\ 1 & -i & -1 \\ -1 & 1 & i\end{array}\right]^{H}=\left[\begin{array}{rrr}i & -1 & 1 \\ 1 & -i & -1 \\ -1 & 1 & i\end{array}\right]\left[\begin{array}{rrr}-i & 1 & -1 \\ -1 & i & 1 \\ 1 & -1 & -i\end{array}\right]=\left[\begin{array}{rrr}3 & -1 & -1-2 i \\ -1 & 3 & -1 \\ -1+2 i & -1 & 3\end{array}\right]$.
Therefore, the matrix we deal with is normal and thus unitarily diagonalizable.
a. Compute the singular value decomposition of the matrix $M=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 4 \\ 0 & 3 & 0 & 0 \\ 2 & 0 & 0 & 0\end{array}\right]$.
b. Find the closest (with respect to Frobenius norm) matrix of rank 2 to M.

REQUIRED KNOWLEDGE:singular value decomposition, lower rank approximation.

Solution:

3a: Note that

$$
M^{T} M=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 4 \\
0 & 3 & 0 & 0 \\
2 & 0 & 0 & 0
\end{array}\right]^{T}\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 4 \\
0 & 3 & 0 & 0 \\
2 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 2 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 \\
0 & 4 & 0 & 0
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 4 \\
0 & 3 & 0 & 0 \\
2 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{rrrr}
5 & 0 & 0 & 0 \\
0 & 9 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 16
\end{array}\right] .
$$

Then, we can conclude that the eigenvalues are given by $\lambda_{1}=16, \lambda_{2}=9, \lambda_{3}=5$, and $\lambda_{4}=0$. Hence, the singular values are $\sigma_{1}=4, \sigma_{2}=3, \sigma_{3}=\sqrt{5}$, and $\sigma_{4}=0$. Since $M^{T} M$ is already diagonal, we only need to change the oder of diagonal elements in order to diagonalize it with respect to the order of the eigenvalues we have. Note that

$$
M^{T} M=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{cccc}
16 & 0 & 0 & 0 \\
0 & 9 & 0 & 0 \\
0 & 0 & 5 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

is diagonalization of $M^{T} M$ by an orthogonal matrix. As such, we can take

$$
V=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

Now, we have

$$
\begin{aligned}
& u_{1}=\frac{1}{\sigma_{1}} M v_{1}=\frac{1}{4}\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 4 \\
0 & 3 & 0 & 0 \\
2 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right], \\
& u_{2}=\frac{1}{\sigma_{2}} M v_{2}=\frac{1}{3}\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 4 \\
0 & 3 & 0 & 0 \\
2 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right], \\
& u_{3}=\frac{1}{\sigma_{3}} M v_{3}=\frac{1}{\sqrt{5}}\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 4 \\
0 & 3 & 0 & 0 \\
2 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]=\frac{1}{\sqrt{5}}\left[\begin{array}{l}
1 \\
0 \\
0 \\
2
\end{array}\right] .
\end{aligned}
$$

Finally, we need to determine an orthonormal basis for the null space of M^{T}. Note that

$$
0=M^{T} x=\left[\begin{array}{llll}
1 & 0 & 0 & 2 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 \\
0 & 4 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
x_{1}+2 x_{4} \\
3 x_{3} \\
0 \\
4 x_{2}
\end{array}\right] .
$$

This leads to

$$
u_{4}=\frac{1}{\sqrt{5}}\left[\begin{array}{r}
-2 \\
0 \\
0 \\
1
\end{array}\right]
$$

Consequently, we have the following singular value decomposition:

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 4 \\
0 & 3 & 0 & 0 \\
2 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{rcrr}
0 & 0 & \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}}
\end{array}\right]\left[\begin{array}{cccc}
4 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & \sqrt{5} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] .
$$

$\mathbf{3 b}$: The closest rank 2 approximation can be found as:

$$
\tilde{M}=\left[\begin{array}{rrrr}
0 & 0 & \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}}
\end{array}\right]\left[\begin{array}{cccc}
4 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 4 \\
0 & 3 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

a. Let A be a nonsingular matrix. Show that if λ is an eigenvalue of A then $\frac{1}{\lambda}$ is an eigenvalue of A^{-1}.
b. Show that the determinant of an orthogonal matrix is either -1 or 1 .
c. Show that eigenvalue of an orthogonal matrix must have modulus 1. [Hint: Modulus of a complex number z is defined by $\|z\|=(\bar{z} z)^{1 / 2}$.]
d. Let M be a normal matrix. Show that if all eigenvalues are equal to 1 then $M=I$.

REQUIRED KNOWLEDGE: eigenvalues, orthogonal matrices, normal matrices.

SOLUTION:

4a: Let (λ, x) be an eigenpair of A, that is

$$
A x=\lambda x
$$

Since A is nonsingular, we get

$$
\begin{aligned}
A^{-1} A x & =\lambda A^{-1} x \\
x & =\lambda A^{-1} x \\
\frac{1}{\lambda} x & =A^{-1} x
\end{aligned}
$$

which proves the claim.
4b: If U is orthogonal, then $U^{T} U=I$. Then, we have

$$
1=\operatorname{det}\left(U^{T} U\right)=\operatorname{det}\left(U^{T}\right) \operatorname{det}(U)=\operatorname{det}(U)^{2}
$$

as determinant is invariant under transposition. Hence, we get $\operatorname{det}(U)=\mp 1$.
4c: Let U be an orthogonal matrix and (λ, x) be an eigenpair of U. Then, we have

$$
U x=\lambda x
$$

This means that

$$
x^{H} U^{H}=\bar{\lambda} x^{H}
$$

and hence

$$
x^{H} U^{H} U x=\bar{\lambda} \lambda x^{H} x
$$

Since U is orthogonal, we have $U^{H}=U^{T}$ and hence $U^{H} U=I$. Therefore, we get

$$
x^{H} x=\bar{\lambda} \lambda x^{H} x
$$

which proves the claim.
4d: Since M is normal, it can be unitarily diagonalizable, that is

$$
M=U^{H} D U
$$

where U is a unitary matrix and D is diagonal carrying the eigenvalues of M on the diagonal. If all eigenvalues of M are equal to 1 , then $D=I$ and hence $M=U^{H} U=I$.

