
Linear Algebra I

20/03/2014, Thursday, 14:00-16:00

You are NOT allowed to use any type of calculators.

 (8+7+7=22 pts) Inner product spaces

Consider the vector space R2×2. Let

〈A,B〉 = tr(ATB)

where tr denotes the sum of the diagonal elements.

a. Show that 〈A,B〉 is an inner product.

b. Find the distance between the matrices

[
1 2
1 0

]
and

[
3 3
1 2

]
.

c. Find the angle between the matrices

[
1 1
1 1

]
and

[
1 −1
1 1

]
.

Required Knowledge: definition of inner product spaces.

Solution:

1a: We need to show that

i. 〈A,A〉 > 0 for all A ∈ R2×2, and 〈A,A〉 = 0 if and only if A = 0,

ii. 〈A,B〉 = 〈B,A〉 for all A, B ∈ R2×2,

iii. 〈αA+ βB,C〉 = α〈A,C〉+ β〈B,C〉 for all A, B, C ∈ R2×2 and α, β ∈ R.

To show (i), let A =

[
a b
c d

]
. Then, we have

ATA =

[
a c
b d

] [
a b
c d

]
=

[
a2 + c2 ab+ cd
ab+ cd b2 + d2

]
.

This means that
〈A,A〉 = a2 + c2 + b2 + d2 > 0

for all A ∈ R2×2. Moreover, we have

a2 + c2 + b2 + d2 = 0 if and only if a = b = c = d = 0.

In other words,
〈A,A〉 = 0 if and only if A = 0.

To show (ii), let

A =

[
a11 a12
a21 a22

]
B =

[
b11 b12
b21 b22

]
.

Note that

ATB =

[
a11 a21
a12 a22

] [
b11 b12
b21 b22

]
=

[
a11b11 + a21b21 a11b12 + a21b22
a12b11 + a22b21 a12b12 + a22b22

]



and

BTA =

[
b11 b21
b12 b22

] [
a11 a12
a21 a22

]
=

[
b11a11 + b21a21 b11a12 + b21a22
b12a11 + b22a21 b12a12 + b22a22

]
.

Then, we have
tr(ATB) = tr(BTA) = a11b11 + a21b21 + a12b12 + a22b22.

This means that
〈A,B〉 = 〈B,A〉

for all A, B ∈ R2×2.
To show (iii), note that

〈αA+ βB,C〉 = tr
(
(αA+ βB)TC

)
= tr(αATC) + tr(βBTC)

since tr(M +N) = tr(M) + tr(N). Now, it follows from the fact that tr(µM) = µtr(M) that we
have

〈αA+ βB,C〉 = tr(αATC) + tr(βBTC) = αtr(ATC) + βtr(BTC) = α〈A,C〉+ β〈B,C〉.

for all A, B, C ∈ R2×2 and α, β ∈ R.
1b: The distance of two matrices A and B is defined by

‖A−B‖ = 〈A−B,A−B〉 12 .

Hence, we have

‖
[
1 2
1 0

]
−
[
3 3
1 2

]
‖2 = ‖

[
−2 −1

0 −2

]
‖2 = tr

([
−2 −1

0 −2

]T [−2 −1
0 −2

])

= tr

([
−2 0
−1 −2

] [
−2 −1

0 −2

])
= tr

([
4 2
2 5

])
= 9.

Therefore, the distance between these matrices is 3.
1c: The angle two matrices A and B is defined by

cos θ =
〈A,B〉
‖A‖‖B‖

.

Note that

〈
[
1 1
1 1

]
,

[
1 −1
1 1

]
〉 = tr

([
1 1
1 1

]T [
1 −1
1 1

])
= tr

([
1 1
1 1

] [
1 −1
1 1

])
= tr

([
2 0
2 0

])
= 2,

‖
[
1 1
1 1

]
‖ = tr

([
1 1
1 1

]T [
1 1
1 1

]) 1
2

= tr

([
2 2
2 2

]) 1
2

= 2,

and

‖
[
1 −1
1 1

]
‖ = tr

([
1 −1
1 1

]T [
1 −1
1 1

]) 1
2

= tr

([
1 1
−1 1

] [
1 −1
1 1

]) 1
2

= tr

([
2 0
0 2

]) 1
2

= 2.

Therefore, we get

cos θ =
2

2 · 2
=

1

2

which means that θ = π
3 .



 (15+7=22 pts) Diagonalization

a. Find an orthogonal matrix that diagonalizes the matrix

 3 0 −2
0 3 0
−2 0 3

 .
b. Without finding its eigenvalues, determine whether or not the matrix

 i −1 1
1 −i −1
−1 1 i

 is

unitarily diagonalizable.

Required Knowledge: diagonalization, normal matrices.

Solution:

2a: We begin with finding the eigenvalues. Note that

det

3− λ 0 −2
0 3− λ 0
−2 0 3− λ

 = (3− λ) det

([
3− λ −2
−2 3− λ

])
= (3− λ)

(
(3− λ)2 − 4

)
= (3− λ)(3− λ− 2)(3− λ+ 2).

Therefore, the eigenvalues are λ1 = 1, λ2 = 3, and λ3 = 5. Now, we proceed with finding
eigenvectors.

For λ1 = 1, we have  2 0 −2
0 2 0
−2 0 2

x1 = 0 =⇒ x1 =

1
0
1

 .
For λ2 = 3, we have  0 0 −2

0 0 0
−2 0 0

x2 = 0 =⇒ x2 =

0
1
0

 .
For λ3 = 5, we have −2 0 −2

0 −2 0
−2 0 −2

x3 = 0 =⇒ x3 =

 1
0
−1

 .
Since the matrix we deal with is symmetric and eigenvectors corresponding to distinct eigenvalues
of a symmetric matrix are orthogonal each other, the vectors x1, x2, and x3 are mutually orthogo-
nal. Then, we only need to normalise those vectors in order to obtain an orthogonal diagonalizer.
Thus, we get  3 0 −2

0 3 0
−2 0 3

 1√
2

0 1√
2

0 1 0
1√
2

0 − 1√
2

 =

 1√
2

0 1√
2

0 1 0
1√
2

0 − 1√
2

1 0 0
0 3 0
0 0 5

 .
2b: A complex matrix is unitarily diagonalizable if and only if it is normal. Note that i −1 1
1 −i −1
−1 1 i

H  i −1 1
1 −i −1
−1 1 i

 =

−i 1 −1
−1 i 1

1 −1 −i

 i −1 1
1 −i −1
−1 1 i

 =

 3 −1 −1− 2i
−1 3 −1

−1 + 2i −1 3





and that i −1 1
1 −i −1
−1 1 i

 i −1 1
1 −i −1
−1 1 i

H =

 i −1 1
1 −i −1
−1 1 i

−i 1 −1
−1 i 1

1 −1 −i

 =

 3 −1 −1− 2i
−1 3 −1

−1 + 2i −1 3

 .
Therefore, the matrix we deal with is normal and thus unitarily diagonalizable.



 (15+7=22 pts) Singular value decomposition

a. Compute the singular value decomposition of the matrix M =


1 0 0 0
0 0 0 4
0 3 0 0
2 0 0 0

 .
b. Find the closest (with respect to Frobenius norm) matrix of rank 2 to M .

Required Knowledge:singular value decomposition, lower rank approximation.

Solution:

3a: Note that

MTM =


1 0 0 0
0 0 0 4
0 3 0 0
2 0 0 0


T 

1 0 0 0
0 0 0 4
0 3 0 0
2 0 0 0

 =


1 0 0 2
0 0 3 0
0 0 0 0
0 4 0 0




1 0 0 0
0 0 0 4
0 3 0 0
2 0 0 0

 =


5 0 0 0
0 9 0 0
0 0 0 0
0 0 0 16

 .
Then, we can conclude that the eigenvalues are given by λ1 = 16, λ2 = 9, λ3 = 5, and λ4 = 0.
Hence, the singular values are σ1 = 4, σ2 = 3, σ3 =

√
5, and σ4 = 0. Since MTM is already

diagonal, we only need to change the oder of diagonal elements in order to diagonalize it with
respect to the order of the eigenvalues we have. Note that

MTM =


0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0




16 0 0 0
0 9 0 0
0 0 5 0
0 0 0 0




0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0


is diagonalization of MTM by an orthogonal matrix. As such, we can take

V =


0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

 .
Now, we have

u1 =
1

σ1
Mv1 =

1

4


1 0 0 0
0 0 0 4
0 3 0 0
2 0 0 0




0
0
0
1

 =


0
1
0
0

 ,

u2 =
1

σ2
Mv2 =

1

3


1 0 0 0
0 0 0 4
0 3 0 0
2 0 0 0




0
1
0
0

 =


0
0
1
0

 ,

u3 =
1

σ3
Mv3 =

1√
5


1 0 0 0
0 0 0 4
0 3 0 0
2 0 0 0




1
0
0
0

 =
1√
5


1
0
0
2

 .



Finally, we need to determine an orthonormal basis for the null space of MT . Note that

0 = MTx =


1 0 0 2
0 0 3 0
0 0 0 0
0 4 0 0



x1
x2
x3
x4

 =


x1 + 2x4

3x3
0

4x2

 .
This leads to

u4 =
1√
5


−2

0
0
1

 .
Consequently, we have the following singular value decomposition:

1 0 0 0
0 0 0 4
0 3 0 0
2 0 0 0

 =


0 0 1√

5
− 2√

5

1 0 0 0
0 1 0 0
0 0 2√

5
1√
5




4 0 0 0
0 3 0 0

0 0
√

5 0
0 0 0 0




0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

 .
3b: The closest rank 2 approximation can be found as:

M̃ =


0 0 1√

5
− 2√

5

1 0 0 0
0 1 0 0
0 0 2√

5
1√
5




4 0 0 0
0 3 0 0
0 0 0 0
0 0 0 0




0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

 =


0 0 0 0
0 0 0 4
0 3 0 0
0 0 0 0

 .



 (6+6+6+6=24 pts) Eigenvalues

a. Let A be a nonsingular matrix. Show that if λ is an eigenvalue of A then 1
λ is an eigenvalue

of A−1.

b. Show that the determinant of an orthogonal matrix is either −1 or 1.

c. Show that eigenvalue of an orthogonal matrix must have modulus 1. [Hint: Modulus of a
complex number z is defined by ‖z‖ = (z̄z)1/2.]

d. Let M be a normal matrix. Show that if all eigenvalues are equal to 1 then M = I.

Required Knowledge: eigenvalues, orthogonal matrices, normal matrices.

Solution:

4a: Let (λ, x) be an eigenpair of A, that is

Ax = λx.

Since A is nonsingular, we get

A−1Ax = λA−1x

x = λA−1x

1

λ
x = A−1x

which proves the claim.

4b: If U is orthogonal, then UTU = I. Then, we have

1 = det(UTU) = det(UT ) det(U) = det(U)2

as determinant is invariant under transposition. Hence, we get det(U) = ∓1.

4c: Let U be an orthogonal matrix and (λ, x) be an eigenpair of U . Then, we have

Ux = λx.

This means that
xHUH = λ̄xH

and hence
xHUHUx = λ̄λxHx.

Since U is orthogonal, we have UH = UT and hence UHU = I. Therefore, we get

xHx = λ̄λxHx

which proves the claim.

4d: Since M is normal, it can be unitarily diagonalizable, that is

M = UHDU

where U is a unitary matrix and D is diagonal carrying the eigenvalues of M on the diagonal. If
all eigenvalues of M are equal to 1, then D = I and hence M = UHU = I.


